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Summary

1. Metabolic scaling theory predicts how tree water flow rate (Q) scales with tree mass (M) and

assumes identical scaling for biomass growth rate (G) withM. Analytic models have derived gen-

eral scaling expectations from proposed optima in the rate of axial xylem conduit taper (taper

function) and the allocation of wood space to water conduction (packing function). Recent

predictions suggestG andQ scale withM to the � 0·7 power with 0·75 as an upper bound.

2. We complement this a priori optimization approach with a numerical model that incor-

porates species-specific taper and packing functions, plus additional empirical inputs essen-

tial for predicting Q (effects of gravity, tree size, heartwood, bark, and hydraulic

resistance of leaf, root and interconduit pits). Traits are analysed individually, and in

ensemble across tree types, to define a 2D ‘scaling space’ of absolute Q vs. its scaling

exponent with tree size.

3. All traits influenced Q and many affected its scaling with M. Constraints driving the optimi-

zation of taper or packing functions, or any other trait, can be relaxed via compensatory

changes in other traits.

4. The scaling space of temperate trees overlapped despite diverse anatomy and winter-adap-

tive strategies. More conducting space in conifer wood compensated for narrow tracheids;

extensive sapwood in diffuse-porous trees compensated for narrow vessels; and limited sap-

wood in ring-porous trees negated the effect of large vessels. Tropical trees, however, achieved

the greatest Q and steepest size-scaling by pairing large vessels with extensive sapwood, a

combination compatible with minimal water stress and no freezing-stress.

5. Intraspecific scaling across all types averaged Q / M 0·63 (maximum = Q / M 0·71) for

size-invariant root–shoot ratio. Scaling reached Q / M 0·75 only if conductance increased faster

in roots than in shoots with size. Interspecific scaling could reach Q / M 0·75, but this may

require the evolution of size-biased allometries rather than arising directly from biophysical

constraints.

6. Our species-level model is more realistic than its analytical predecessors and provides a tool

for interpreting the adaptive significance of functional trait diversification in relation to whole-

tree water use and consequent metabolic scaling.
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Introduction

How does tree water use scale with tree size, and how does

it differ across species? Given the essential role of water,

this question is fundamental to understanding the meta-

bolic scaling of individual trees, species, forest communi-

ties and ecosystems. Predicting the answer from vascular

anatomy is the subject of this study. Modelling water use

from vascular properties has a long history dating at least

to da Vinci’s rule of area-preserving branching (Richter

1970), continuing with the Ohm’s law analogy of van den

Honert (1948; Richter 1973) and culminating in the con-

cept of ‘hydraulic architecture’ (Zimmermann 1978) repre-

sented in contemporary models (e.g. Tyree 1988; Sperry

et al. 2002; Macinnes-Ng et al. 2011). At the heart of these

complex models is a simple relationship for whole-tree sap

flow at steady state (Q):

Q ¼ KðDP� qgHÞ eqn 1

where K is tree hydraulic conductance, ΔP is soil to canopy

pressure drop, and ρgH is the pressure required to offset

the force of gravity on the water column (ρ = density of

water; g, acceleration of gravity; H, tree height). Canopy

xylem pressure regulation (via stomatal control of Q) con-

strains the (ΔP – ρgH) term, and most of the uncertainty

in hydraulic modelling lies in representing K which

depends mostly on the complex anatomy of the flow path

from soil to leaf.

Until the revolutionary approach of West, Brown and

Enquist (‘WBE’; West, Brown & Enquist 1997; Enquist,

West & Brown 2000; West, Brown & Enquist 1999), most

hydraulic modelling was based on specifying what K is

from empirical inputs. In contrast, the WBE model derives

what the allometric scaling of K should be by assuming a

universal set of optimization criteria and an intentionally

minimalist representation of plant vasculature. The WBE

goal is to predict universal expectations for how K, and

hence Q, and all dependent metabolic processes, should

scale with plant size. The focus is on predicting the power

function scaling exponent (b):

Y / Mb eqn 2

where Y is the variable of interest (K, Q, rates of metabo-

lism or growth) and M is plant mass.

The result is a metabolic scaling theory that emphasizes

the unifying consequences of selection for optimal vascular

transport under overarching constraints. Savage et al.

(2010) have recently extended the theory with important

improvements in how it represents vascular architecture.

In this study, we present a model that strikes a middle

ground between the structure-to-function optimization

approach of Savage et al. (and its WBE predecessors) and

the descriptive – empirical approach of more complex

numerical models. We add a minimal set of hydraulic

inputs to the Savage et al. analytical model with the goal

of predicting the actual value of K and Q rather than pro-

portional proxies that are sufficient for predicting scaling

exponents. Our species-level model turns the proportional-

ity in eqn 2 (Y / M b) into an equality (Y = k0 M b) by

specifying scaling multipliers (k0). The additional complex-

ity requires a numerical approach, but is justified because

selection for optimal vascular function should concern

traits underlying the multiplier as well as the exponent.

Furthermore, variation in scaling multipliers across species

could influence interspecific exponents (b) independently of

the intraspecific value of b. We relax any a priori optimiza-

tion criteria and allow key hydraulic inputs to be empiri-

cal, so that we can predict the ‘scaling space’ defined by

variation in k0 and b across species.

Figure 1 provides a roadmap of the Savage et al. (2010)

model. The branching architecture component (Fig. 1, left)

specifies that the tree has symmetric, self-similar branching

architecture that preserves the cross-sectional area of

branches across each branching junction (da Vinci’s rule;

Horn 2000). Hence, the tree can be represented by a col-

umn (Fig. 1, center). The mass allometry module predicts

the best-fit power-law scaling between trunk diameter

(DB0; 0 denotes trunk branch rank; symbols in Table 1)

and tree mass (M):

DB0 ¼ k1M
c eqn 3

where k1 is the scaling multiplier and c the scaling expo-

nent. The value of the exponent c is derived from well-

tested theory that H must scale with DB0
2/3 for trees to

maintain a constant safety margin from buckling under

their own weight (‘elastic similarity’, McMahon 1973). An

elastically similar column has a mass exponent of c = 3/8

in eqn 3 (West, Brown & Enquist 1997, 1999; Enquist,

West & Brown 2000; Savage et al. 2010).

The water use allometry module predicts how the

steady-state rate of midday xylem transport (Q) scales with

trunk diameter:

Q ¼ k2D
q
B0 eqn 4

with multiplier k2 and water use exponent, q. To obtain Q,

the Hagen–Poiseuille equation (Zimmermann 1983) is used

to calculate tree hydraulic conductance (K) from the num-

ber and dimensions of the xylem conduits in the tree sap-

wood, given by the xylem architecture module (Fig. 1,

right). The prediction of K yields Q by eqn 1, and the scal-

ing of Q with tree size yields the water use allometry of

eqn 4. Previous derivations of the water use exponent q in

eqn 4 have assumed that selection for transport efficiency

has driven it to its theoretical maximum of q = 2 (for the

assumed xylem architecture; West, Brown & Enquist 1999;

Enquist, West & Brown 2000; Savage et al. 2010). At this

point, the rate of whole-tree water transport depends solely

on its trunk basal area and is not negatively influenced by

tree height or transport distance (Q / DB0
2/H0).

The fifth metabolic isometry component of the Savage

et al. model is a fundamental assumption of metabolic

scaling theory: because photosynthetic CO2 flux and
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transpirational water flux are both limited by stomatal dif-

fusion, gross photosynthesis and potential isometric surro-

gates such as total respiration and growth rate (G) should

scale proportionally with Q (Enquist et al. 2007a). Com-

bining metabolic isometry with the mass and water use all-

ometries predicts metabolic scaling: G / Q / M cq, where

the metabolic scaling exponent is the product of the expo-

nents for mass (c; eqn 3) and water use (q; eqn 4) scaling.

If c = 3/8 (from elastic similarity) and q = 2 (the theo-

retical Savage et al. maximum), the metabolic exponent

c·q = 3/4 (West, Brown & Enquist 1999; Enquist, West &

Brown 2000). This prediction has provoked debate, partly

over the validity of metabolic isometry and in partly

regarding q (e.g. Meinzer et al. 2005; Reich et al. 2006;

Enquist et al. 2007a; Sperry, Meinzer & McCulloh 2008).

Metabolic isometry is addressed in the second paper of this

series (von Allmen et al. 2012). Here, we focus on the

derivation of q.

For q � 2 the negative effects of tree height and dis-

tance on Q must be eliminated. Height is negated if the

drop in xylem pressure from soil to canopy (ΔP) compen-

sates for gravity (ρgH), making the driving force (ΔP –

ρgH; eqn 1) height-invariant. However, the (ΔP – ρgH)

term often declines with height (Mencuccini 2003; Ryan

Phillips & Bond 2006).

Transport distance can be negated by the ‘bottleneck

effect’ where high flow resistance at the end of the xylem

pipeline restricts the flow rate regardless of pipeline length.

A bottleneck effect is consistent with the tapering of xylem

conduits from trunk to terminal twig (West, Brown &

Enquist 1999; Enquist, West & Brown 2000; Sperry,

Meinzer & McCulloh 2008). This narrowing is captured in

the Savage et al. model by a ‘taper function’: the conduit

diameter inside the terminal twigs is assumed size-invariant

and conduits widen proximally as the stems themselves

widen across branch ranks (Fig. 1, downward ‘axial taper’

arrow).

The bottleneck effect is also influenced by how the

number of conduits running in parallel changes across

branch ranks. The Savage et al. model uses a ‘packing

function’ (Sperry, Meinzer & McCulloh 2008) to govern

the number of conduits that fit in a specified portion of

wood space. Consequently, as conduits become narrower

towards the twigs, their number per wood area increases

(Fig. 1, upward ‘conduit packing’ arrow). To optimize

space-filling, Savage et al. assume a universal packing

function that allocates a constant fraction of wood space

to transport vs. across all branch ranks. Savage et al.

then solve for optimal conduit taper on the basis of an

efficiency vs. safety trade-off (see also Enquist, West &

Brown 2000). Taper is increased just enough to yield

q = 2 (to maximize transport efficiency), but no more.

Excessive taper would continue to widen conduits proxi-

mally, but to no effect other than to compromise safety

from cavitation (larger conduits tend to be more vulnera-

ble; Hacke et al. 2006).

Is the bottleneck effect enough to yield q = 2? Savage

et al. recognize that not all species have identical taper and

packing functions (McCulloh et al. 2010), suggesting that

the space-filling and efficiency vs. safety trade-offs they

invoke may have diverse context-dependent optima (Price,

Enquist & Savage 2007). The intentional simplicity of the

Savage et al. model also excluded additional variables that

potentially influence the bottleneck effect such as the

Fig. 1. Elements of metabolic scaling theory. Self-similar and symmetric branching architecture (left) that is area-preserving (central col-

umn) yields trunk diameter (DB0) by mass (M c) scaling. Xylem conduit architecture (shown in column cross-sections) yields water use

(Q, flow rate) by DB0
q scaling. Combining mass and water use yields Q by M cq scaling. If growth rate (G) is isometric with Q (metabolic

isometry), then the theory yields growth rate (G) by M cq scaling. Asterisked components represent novel parameters that were not explicit

in the Savage et al. (2010) model. See Table 1 for other symbols.
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terminal resistance of leaves and the presence of noncon-

ducting heartwood and bark.

The Savage et al. model also considers a basic issue in

the derivation of q: the water use allometry only becomes

a pure power function (e.g. eqn 4) at the limit of infinite

tree size (Mencuccini et al. 2007). Thus, best-fit power

functions across different size ranges yield different q (and

c) exponents. For example, Savage et al. solve for the rate

of conduit taper that is just sufficient to make q = 2 at the

limit of infinite tree size, while the same taper yields only

q � 1·86 for finite-sized trees. This leads to their prediction

of a metabolic scaling exponent of c·q � 0·70 (3/8·1·86) in
trees of actual size, with c·q = 0·75 as an upper bound

(Savage et al. 2010).

Our species model attempts to clarify some of the uncer-

tainty in metabolic scaling theory by revisiting the deriva-

tion of the water use allometry component (eqns 1 & 4).

New inputs of xylem architecture and function (asterisks

in Fig. 1, see Model Description) are added to the Savage

et al. framework to improve q estimation and to enable

the prediction of the k2 multiplier so that actual flow rates,

Q, can be estimated. We focus on how specific hydraulic

traits can effect the scaling of water use. For simplicity, we

do not alter the branching architecture of the Savage et al.

model (2010). We apply the new model to four objectives.

(i) Using the simpler Savage et al. parameterization, we

quantify the effects of finite tree size and gravity (i.e. the

[ΔP – ρgH] term) on intraspecific scaling. (ii) We determine

the influence of new inputs and variable taper and packing

on the water use exponent (q) and multiplier (k2). (iii) We

translate how interspecific variation in wood traits trans-

lates into a map of ‘scaling space’ – defined by all possible

combinations of multipliers (k2) and the exponents (q)

across species. The scaling space was simulated for four

major functional tree types: conifers, ring-porous- and

tropical and temperate diffuse-porous-angiosperms. (iv)

Ecological drivers of scaling diversity are discussed, as are

the implications for ¾ power metabolic scaling within vs.

across species. The second paper tests the model against

empirical measurements (von Allmen et al. 2012).

Model description

The model has 17 inputs, with default values listed in

Table 2. The model was written as a macro in Microsoft

Excel using Visual Basic for Applications and is available

from the senior author.

BRANCHING ARCH ITECTURE AND MASS ALLOMETRY

Trees are represented as a symmetrically self-similar struc-

ture shown in Fig. 1 (left). Branches at level i (counting

from i = 0 at the trunk) are identical in length and diame-

ter. Area-preservation (da Vinci’s rule; Horn 2000) sets the

ratio of daughter/mother branch diameter (b) at b = n�1/2,

where n is the daughter/mother branch number ratio

(Table 1 defines all symbols). Elastic similarity, which

requires H / DB0
2/3 (McMahon 1973), sets the daughter/

mother branch length ratio (c) at c = n�1/3. Modelled trees

converge on elastic similarity with size as observed (Niklas

& Spatz 2004).

Dimensions of the terminal branch rank (twigs) are

assumed constant regardless of tree size. Twig diameter set

to 2 mm. Twig length was selected to yield convergence in

large trees on the desired safety factor from buckling (HB/

H). The height at elastic buckling (HB) was calculated

according to Niklas (1994). Simulated ‘species’ had identi-

cal branch architecture inputs (default b, c, n, HB/H, twig

diameter, twig length; Table 2). The mass scaling exponent

(c) was obtained from the slope of log-log plots of DB0 vs.

tree volume (V = p DB0
2 H/4) across networks of different

Table 1. Major symbols and definitions

Symbols Definitions

ASi Sapwood area, branch level i

AS/AT Sapwood area/basal area for reference tree size with

DB0 = 72 cm

CF Fraction of wood occupied by conduit lumens

(conduit lumen fraction)

C Xylem hydraulic conductance/Hagen–Poiseuille
conductance (end-wall correction)

DB0 Trunk diameter (branch rank 0)

DBi Stem diameter for branch rank i

DC Xylem conduit diameter

DC max Maximum allowable conduit diameter

DC twig Conduit diameter in the distal-most branch rank (twigs)

DP Pith diameter

F Number of conduits per wood area

g acceleration of gravity

G biomass growth rate of shoot

H/HB tree height/Euler buckling height

K tree hydraulic conductance

KL /KT Leaf hydraulic conductance/supporting twig

conductance

K/KS Tree conductance/shoot conductance

k0, b Generalized scaling multiplier and exponent

(e.g. Y = k0 Mb)

k1, c Mass scaling multiplier and exponent (DB0 = k1 Mc)

k2, q Water use scaling multiplier and exponent (Q = k2
DB0

q)

k3, p Taper function multiplier and exponent (DC = k3 DBi
p)

k4, d Packing function multiplier and exponent(F = k4 DC
d)

k5, a Bark thickness function multiplier and exponent

(TBi = k5 DBi
a)

k6, s Sapwood area function multiplier and exponent

(ASi = k6 DBi
s)

Li Branch segment length, level i

M Shoot (above-ground) mass

NC Conduit number

n Daughter/mother branch number ratio

Q Steady-state tree water transport rate at mid-day

Qref Q for ‘reference’ tree size of trunk diameter

DB0 = 72 cm

TBi Bark thickness, branch level i

V Shoot (above-ground) volume

b Daughter/mother branch diameter ratio

ΔP Total soil to canopy water potential difference

c Daughter/mother branch length ratio

g Viscosity of water

ρ Density of water

© 2012 The Authors. Functional Ecology © 2012 British Ecological Society, Functional Ecology, 26, 1054–1065
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size. We did not specify the multiplier k1 for intraspecific

scaling. However, for simulations of interspecific scaling,

k1 across species was specified by assuming branch tissue

density equalled wood density (Appendix S1-III in

Supporting Information).

XYLEM ARCHITECTURE AND WATER USE ALLOMETRY

(Q = K2 DB0
Q )

The ‘taper function’ describes how xylem conduit diameter

(DC, lm) increases with stem diameter (DBi mm):

DC ¼ k3D
p
Bi eqn 5

where p is the ‘taper exponent’ and k3 (lm mm�p) the mul-

tiplier. The default p = 1/3 is the smallest p yielding q = 2

at the limit of infinite tree size in the Savage et al. model

(Savage et al. 2010). The choice of the minimum DC in the

terminal twigs dictated k3 (default DC twig = 10 lm,

Table 2). When the model was run with axial taper alone

(as in the Savage et al. model), DC narrows as DBi nar-

rows, but is constant from pith to cambium at a given

branch level (Fig. 1, downward ‘axial taper’ arrow). When

radial taper is added, DC increases from pith to cambium,

starting from DC = DC twig and increasing with the taper

function as branch diameter is incremented (in 100 lm
steps) to DBi (Fig. 1, enlarged cross-section). To avoid

unrealistically large DC, a maximum (Table 2, DC max)

was set. Default DC max was set to 240 lm because this

was the greatest DC in our functional type survey (Table 3;

Appendix S1-II in Supporting Information).

The number of xylem conduits per xylem area (F,

mm�2) was calculated from conduit diameter (DC, lm)

using the ‘packing function’ (Sperry, Meinzer & McCulloh

2008):

F ¼ k4D
d
C eqn 6

where d is the packing exponent (a negative number) and k4
(mm�2 lm�d) the multiplier. The choice of k4 dictated the

fraction of the total wood area occupied by xylem conduits

(CF < 1). For square packing (one conduit per square

of space), maximum F = 106 DC
�2 and CF = [ k4/ 106 ]

DC
(d+2). Savage et al. assumed an optimal d = -2 (our

default), such that CF is constant from twig to trunk (or

pith to cambium). The default k4 (Table 2) was chosen to

yield CF = 0·1, a typical hardwood value (McCulloh et al.

2010). If d was less negative than �2, then CF increased

from twig to trunk and vice-versa for d more negative

than �2.

Xylem cross-sectional area was obtained by subtracting

the bark and pith area from total branch area. Pith diame-

ter (DP, mm) was invariant within a tree, with a default of

1 mm. The bark thickness at level i (TBi, mm) was

calculated from branch diameter (DBi, mm) as:

TBi ¼ k5D
a
Bi eqn 7

where a is the bark exponent and k5 (mm(1-a)) the multi-

plier. For simplicity, we restricted the analysis of bark

thickness to the two bark functions used to test the model

in the companion paper (von Allmen et al. 2012). These

were from a relatively thin-barked maple (Acer grandident-

atum) and a thicker-barked oak (Quercus gambelii). Maple

served as the default (Table 2).

Total xylem area was divided into nonconducting

heartwood and conducting sapwood. The sapwood area

(ASi, mm2) at level i from branch diameter (DBi, mm) is

given by:

ASi ¼ k6D
s
Bi eqn 8

where s is the sapwood exponent and k6 (mm(2-s)) the mul-

tiplier. The exponent s has a maximum of s = 2 to avoid

sapwood area from exceeding xylem area and a minimum

of s = 1 for thin sapwood of approximately constant

depth. Values of k6 and s were obtained from the compan-

ion paper on oak and maple (von Allmen et al. 2012) and

the sapflux literature. Sapwood functions were adjusted to

have heartwood first appear at DBi = 2·2 cm and expand

to reduce sapwood to varying percentages of total basal

area at DB0 = 72 cm. The default percentage was 74%.

Table 2. Model inputs and outputs in order of appearance in text.

Power functions were used for their simplicity and good fit to

empirical trends

Input Default

n, branch number ratio 2

c, branch length ratio 0·794 (elastic similarity for n = 2

symmetric branching)

b, branch diameter ratio 0·707 (area-preserving n = 2

symmetric branching)

HB /H, mature tree safety

factor

4

Terminal twig diameter 2 mm

Terminal twig length 8·1 cm

DC = k3 DBi
p; taper function k3 = 7·9 lm mm�p, p = 1/3;

DC in lm, DBi in mm

DC max 240 lm
DC twig 10 lm
F = k4 DC

d; packing function k4 = 100 000 lm�d mm�2;

d = -2; F in mm�2, DC in lm
DP, pith diameter 1 mm

TBi = k5 DBi
a bark function k5 = 0·0225 mm(1-a); a = 1·05; TBi

and DBi in mm

ASi = k6 DBi
s; sapwood

function

k6 = 0·905 mm(2-s); s = 1·93;
ASi in mm2, DBi in mm

C, end-wall correction factor 0·44 (angiosperms); 0·36
(conifers)

KL/KT, leaf/twig conductance 0·30
K/KS, tree/shoot conductance 0·50
ΔP, total pressure drop 1 MPa

Outputs

H, DB0 and V, yielding

estimates of c: DB0 / Mc

K and DB0

Q and DB0, yielding

estimates of q: Q = k2 D
q

Estimates of G / Q / Mcq

© 2012 The Authors. Functional Ecology © 2012 British Ecological Society, Functional Ecology, 26, 1054–1065
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This corresponded to a default sapwood depth from the

cambium of 18·9 cm. Power functions for eqns 5-8 were

chosen because of their convenience and good fit to empir-

ical trends. The hydraulic conductance of a branch (KBi)

was calculated from branch length (Li, lm), and the num-

ber (NC) and diameter (DC, lm) of xylem conduits, using

the Hagen–Poiseuille equation. Conduit number was

obtained from the packing function and the sapwood area.

When the model was run with radial DC taper, we inte-

grated the Hagen–Poiseuille equation from the inner sap-

wood boundary (x = 0) to the cambium (x = rc) to yield

the KBi:

KBi ¼ C

Zx¼rc

x¼0

NCðxÞp½DCðxÞ�4=ð128gLiÞdx eqn 9

where NC (x) and DC (x) are functions of the radial dis-

tance x across the sapwood according to the packing

and taper functions. The integral was solved numerically

by 100 lm increments in x (smaller increments were

unnecessary). The viscosity, g, was set at 0·001 Pa s for

20°C. The dimensionless constant C is an empirical cor-

rection factor (0 < C < 1) that accounts for interconduit

flow resistance. The literature yielded default correction

factors of C = 0·44 (angiosperms; Hacke et al. 2006) and

C = 0·36 (conifers; Pittermann et al. 2005). Branch KBi

was multiplied by the number of branches in level i to

yield the parallel conductance of rank i. Rank conduc-

tances in series gave the hydraulic conductance of the

stem network.

Leaf and root system conductances were extrapolated

from the branch network conductance. Leaf conductance

was given by ratio of leaf conductance per twig conduc-

tance (KL/KT), which was assumed to be size-invariant.

This ratio is not often measured, but values from Acer

grandidentatum and Quercus gambelii cited in the com-

panion paper (von Allmen et al. 2012) provided a range.

A similar approach was used to incorporate root system

conductance. The shoot conductance (KS, all branches

plus leaves) was multiplied by the ratio of tree–shoot

conductance (K/KS) to obtain the whole-tree (root plus

shoot) conductance. The default K/KS ratio was 0·5 in

keeping with observations from a variety of woody

plants (Sperry et al. 2002). The default was size-invari-

ance of K/KS, but we also allowed it to increase with

size (Martinez-Vilalta et al. 2007).

Steady-state tree water transport rate (Q, kg hr�1) at

midday was calculated from tree conductance using

eqn 1. Default ΔP = 1 MPa (Mencuccini 2002), making

it size-invariant as seen for Acer grandidentatum and

Quercus gambelii (von Allmen et al. 2012). Thus, the

(ΔP-ρgH) driving force decreased with tree size. In an

alternative ‘gravity compensation’ scenario, the (ΔP-
ρgH) term was size-invariant. These two options cover

the range of gravity responses of trees (see Discussion).

The Savage et al. model and earlier models (West,

Brown & Enquist 1997, 1999; Enquist et al. 2000)

assume isometry between Q and K, thus implicitly

adopting gravity compensation. Linear regressions of

log-transformed Q vs. DB0 data yielded the water use

allometry equation: Q = k2 DB0
q.

Model results

S IZE -DEPENDENT WATER USE ALLOMETRY

We investigated size effects using the model parameterized

as in Savage et al.: no pith, sapwood or bark, no leaves

or roots and no radial taper (Table 2 shows remaining

default inputs). The only difference from Savage et al.

was that we allowed for gravitational effects.

Size effects had two causes: juvenile growth that was

not elastically similar (Appendix S1-I, Fig. S-1 in

Supporting Information) and gravitational reduction in

(ΔP-ρgH) in tall trees. In combination, these created a

nonlinear (in log-log space) water use allometry (Q) with

trunk diameter (DB0; Fig. 2). In small trees, a power-law

fit gave an approximate scaling exponent of Q / DB0
q = 1·12 (Fig. 2, grey). The exponent increased to a maxi-

mum as elastic similarity was approached in medium-

sized trees: Q / DB0
q = 1·72 (Fig. 2, dark grey). In large

trees, the exponent decreased as gravity (ρgH) subtracted

an increasing portion of the pressure difference between

soil and canopy (ΔP = 1 MPa, Table 2). Thus, Q scaling

Table 3. Model inputs used to define the hydraulic scaling of four tree types (Fig. 4). Ranges adapted from the literature (Appendix S1-II

in Supporting Information). Additional inputs were set to defaults listed in Table 2. The AS/AT trunk is the fraction of sapwood area per

basal area in a tree of DB0 = 72 cm that results from the inputted sapwood function. Note that the range of leaf-to-twig conductance ratio

(KL/KT) was assumed to be the same for all categories, as were the sapwood parameters in all but the ring-porous category.

Ring-porous temperate Diffuse-porous temperate Diffuse-porous tropical Conifers

DC twig, lm 21 (16·8–25·2) 12 (9·6–14·4) 21 (16·8–25·2) 7 (5·6–8·4)
DC max, lm 145–240 33–79 158–240 28–45
Taper p 0·30–0·59 0·14–0·41 0·31–0·61 0·20–0·44
Packing d �1·34 to �2·29 �1·65 to �3·27 �2·38 to �2·0 �1·69 to �1·8
CF 0·09–0·37 0·07–0·20 0·06–0·12 0·37–0·42
KL/KT 0·20–0·40 0·20–0·40 0·20–0·40 0·20–0·40
Sapwood s 1·05–1·36 1·55–1·91 1·55–1·91 1·55–1·91
AS/AT trunk 0·003–0·017 0·34–0·74 0·34–0·74 0·34–0·74
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became flatter in tall trees: Q / DB0
q = 0·91 (Fig. 2,

black).

In the gravity compensation scenario, ΔP increased with

H such that the (ΔP-ρgH) term was size-invariant and Q

scaling did not flatten. Instead it reached Q / DB0
q = 1·86

in large sized trees (Fig. 2, dash-dotted no g line) as esti-

mated for the Savage et al. model at their optimal taper

(p = 1/3). Increasing tree size towards infinity gave the

q = 2 asymptote (Savage et al. 2010).

INFLUENCE OF IND IV IDUAL TRA ITS ON WATER USE

SCAL ING

New variables added to the Savage et al. framework

altered water use scaling. We report effects on the expo-

nent, q, and the multiplier, k2, for medium-sized trees (2 <
DB0 � 72 cm) where Q by DB0 scaling was nearly linear in

log-log space (Fig. 2). Rather than cite k2 values, we

substitute a more intuitive proxy: the rate of water trans-

port at a reference tree size (Qref for DB0 = 72 cm).

Although the effects were quantitatively complex

(Fig. 3), the take-home message is simple. All variables

influenced Qref because they either increased tree hydrau-

lic conductance (e.g. more, wider functioning conduits,

higher leaf or root conductances) or reduced it (fewer,

narrower functioning conduits, lower leaf or root con-

ductances). A subset also altered q because they influ-

enced the bottleneck effect: either increasing the

difference in distal-to-proximal balance of hydraulic con-

ductance in the shoot (greater q) or decreasing it (lower

q). One variable (size-dependent K/KS) altered q indepen-

dently of the bottleneck effect.

Figure 3(a) shows the cumulative effect of adding new

variables. Incorporating pith and bark (defaults in

Table 2) reduced Qref by reducing xylem cross-sectional

area, with thicker bark having a greater effect (Fig. 3a);

q was not materially changed. Adding radial taper to the

thin-barked default model decreased Qref further (Fig. 3a,

radial taper) because of the narrowing of vessel diameter

towards the pith; again, q changed little. Adding heart-

wood reduced both Qref and q (Fig. 3a, sapwood%).

Reducing basal sapwood area from 74 to 30% (reducing

sapwood thickness from 18·9 to 6·1 cm) caused q to drop

from 1·72 to below 1·64 and Qref to drop by 24%

(Fig. 3a). Heartwood decreased Qref by reducing the

cross-sectional area for water conduction. Most of this

reduction was in the larger branches and trunk, which

decreased the bottleneck effect of the distal branches and

lowered q.

The 74% basal sapwood function was adopted as the

default (Table 2) for assessing the further effect of adding

leaves in Fig. 3(b). As the KL /KT ratio was decreased

from 1 to 0·01, Qref dropped by over 80% relative to the

default no-leaf model (Fig. 3b) because leaves reduced net-

work conductance. The reduction was at the distal end,

which increased the bottleneck effect, and q increased from

1·72 to 1·92. The measured KL/KT range was relatively nar-

row: from 0·27 in Quercus gambelii to 0·38 in Acer grandi-

dentatum (von Allmen et al. 2012).

The intervessel resistance factor (C, eqn 9) caused a pro-

portional change on Qref, but no change in q because it did

not influence the bottleneck. The same was true for adding

below-ground resistance (Table 2, K/KS = 0·50). However,

if K/KS was allowed to increase with DB0 as estimated for

Pinus sylvestris (K/KS = 0·75 DB0
0·36 from Martinez-Vilalta

et al. 2007), q rose to 2·12. This was the only input that

gave q � 2. It did so not by increasing the shoot bottle-

neck effect, but because root conductance increased faster

than shoot conductance with size.

Varying taper and packing from the universal functions

assumed by Savage et al. was simulated for a default KL/

KT = 0·30 (Table 2; grey symbol in Fig. 3c,d). Fig. 3(c)

shows the effect of taper. The default taper was DC = 7·9
DBi

p = 1/3, corresponding to DC twig = 10 lm. DC twig

was held constant while varying the taper exponent, p, by

adjusting the multiplier. Decreasing taper from p = 1/3 to

p = 0·2 resulted in narrower conduits proximally, which

reduced network conductance (51% drop in Qref) and the

bottleneck effect (decrease in q from 1·76 to 1·59). Increas-
ing taper above p = 1/3 had the opposite effect: Qref

increased by almost 5-fold and q rose to 1·93. At p � 0·6,
conduit diameter in the proximal trunk and branches had

to be capped at DC max = 240 lm (Fig. 3c, asterisked

points). Saturation in q and Qref occurred at p > 9 because

vessels had reached the 240 lm cap at every branch rank

except the twigs. The 240 lm cap, heartwood and gravity

prevented q from saturating at q = 2.

Figure 3(d) shows the influence of the packing function,

F = k4 DC
d. The greater the value of coefficient k4, the

greater the fraction of wood area devoted to water conduc-

tion (CF). Increasing CF caused a proportional increase in

Qref (CF = 0·01 to 0·6) with no effect on q (Fig. 3d). When

varying the packing exponent d, we covaried the multiplier
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Fig. 2. Size-dependent variation in the q exponent (Q / DB0
q) for

tree water flow rate (Q) and trunk diameter (DB0) in modelled

trees. Small trees exhibit flat scaling because of the nonelastically

similar growth of juveniles. Medium trees are steepest because

they are elastically similar and have small gravity effects. The tall-

est trees flatten again because of larger gravity effects, unless there

is gravity compensation (dash-dotted no g line).
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to keep CF constant in the terminal twigs. Increasing d

(less negative), resulted in more big trunk vessels and

hence increased both the relative flow rate (Qref) and the Q

by DB0
q scaling exponent. Decreasing the exponent had

the opposite effect (Fig. 3d, d = �2·5 to �1·5). Effects of

the exponent on Qref were small compared with the effect

of conducting area fraction, CF.

FUNCT IONAL TREE TYPES IN SCAL ING SPACE

While Fig. 3 isolates the consequences of particular traits,

actual scaling integrates variation across all traits at once

to create a 2D cloud of species-specific Qref by q combina-

tions. We used the model to circumscribe this ‘scaling

space’ for major tree categories: ring-porous temperate,

diffuse-porous temperate, diffuse-porous tropical and

conifers. For each category, we estimated the range for

input variables for which multispecies data were available

(Table 3; Appendix S1-II in Supporting Information);

remaining inputs, including K/KS, were defaults (Table 2).

A version of the model (available from the second author)

scanned input combinations that defined the extremes of

Qref and q for medium-sized trees (2 < DB0 � 72 cm).

The four tree categories occupied distinct, but substan-

tially overlapping, scaling space (Fig. 4). The most efficient

transporters, with the greatest Qref and scaling exponent q,

were the tropical diffuse-porous trees (Fig. 4, green DP

tropical outline). Tropical trees combined largest trunk

and twig vessels with extensive sapwood area. The only

parameter compromising efficiency in tropical trees was a

somewhat lower CF (Table 3; fewer vessels per sapwood

area).

Temperate ring-porous angiosperms achieved the next

highest Qref (Fig. 4, black RP outline). Although their ves-

sel diameter is similar to tropical trees, their limited sap-

wood area (Table 3) compromised transport and

contributed to their broad q range. Their broad Qref range

corresponded to a wide range in CF (Table 3). Ring-por-

ous trees overlapped considerably with their chief cohabi-

tants, the temperate diffuse-porous angiosperms (Fig. 4,

red DP temperate outline). Although temperate diffuse-

porous trees have narrower vessel diameters than ring-porous
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trees, this was compensated by their greater sapwood area

(Table 3).

The most surprising result was the performance of the

conifers (Fig. 4, blue conifer outline). Although conifer

tracheids have by far the narrowest conduit diameter

range, they compensate by having high CF (Table 3),

owing to the double role of tracheids in water transport

and mechanical support. The high CF of conifers placed

them almost entirely within the transport capacity of

temperate diffuse-porous angiosperms.

Assuming ‘metabolic isometry’, the hydraulic scaling in

Fig 4 predicts growth rate scaling with tree mass (G / M
cq). Assuming c = 0·369 for medium-sized trees (Appendix

S1-I in Supporting Information), the range for the G / M
cq exponent was mapped onto the four tree types in Fig. 4

(c·q values on upper axis). The metabolic scaling exponents

ranged from 0·26 to 0·71 and excluded three-fourth power

scaling.

INTRASPEC IF IC VS . INTERSPEC IF IC SCAL ING

Each Qref by q coordinate in the scaling space of Fig. 4

corresponds to a unique water use allometry (Q = k2 DB0
q; eqn 4) of a theoretical ‘species’. Each species also has a

potentially unique mass allometry (DB0 = k1 M c) because

of interspecific variation in wood density (Appendix S1-III

in Supporting Information). These ‘species’ were sampled

to simulate intraspecific vs. interspecific scaling of the met-

abolic c·q exponent. Theoretical species with q < 1·5 were

excluded because they are unlikely to exist (see Appendix

S1-III in Supporting Information and Discussion).

When species were chosen at random and assumed to

reach the same maximum size regardless of Qref and q, the

intraspecific c·q averaged 0·63 ± 0·0011 (mean ± SE,

n = 1000 trees) and the interspecific c·q averaged

0·66 ± 0·0018 (Fig. 5, ‘random’). Both intraspecific and

interspecific exponents fell short of c·q = 0·75.
In an alternative ‘height-biased’ sampling, we assumed

that species from the upper right corner of scaling space

in Fig. 4 (greater Qref and q) would have less of a

hydraulic limitation on their maximum height and grow

taller than species towards the lower left corner. Average

intraspecific scaling was no different from the random

scenario (c·q = 0·63 ± 0·0020), but the interspecific c·q
could be significantly steeper depending on the sensitivity

of species stature to their water use allometry and the

size distribution of the interspecific sample. The particular

case shown (see Appendix S1-III in Supporting Infor-

mation for details) shows that interspecific c·q can match

3/4 power scaling (c·q = 0·75 ± 0·0041; Fig 5; ‘height-

biased’).

Discussion

The model answers our opening question by providing spe-

cies-specific predictions of the water use multiplier (k2) and

scaling exponent (q) in the water use allometry equation:

Q = k2 DB0
q. Greater k2 indicates greater water trans-

port, gas exchange and growth as predicted by metabolic

scaling theory and shown empirically (e.g. Hubbard et al.

2001). A larger scaling exponent q means a greater rate of

increase in these presumably competitive capacities with

tree size (Hammond & Niklas 2012). In general, fertile and

consistently moist habitats with low threat of cavitation

Fig. 4. Scaling space showing tree water transport rate (Qref, at

trunk DB0 = 72 cm) and the scaling exponent q (Q / DB0
q) for

conifers (blue), temperate diffuse-porous (red), ring-porous (black,

RP) and tropical trees (green). The corresponding growth rate by

mass exponent (c·q) is given on the upper axis. Parameter ranges

defining these tree types are given in Table 3.
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should favour conducting efficiency over safety. Species

adapted to such habitats should cluster towards the upper

right portions of Qref by q scaling space of Fig. 4. Con-

versely, arid and freezing habitats should push species to

the lower left towards greater safety but lower transport

capacity.

The considerable overlap in scaling space between the

functional tree types exemplifies how trait variation pre-

sumably arises from ecological and evolutionary circum-

stances, and how divergence in scaling space is minimized

by compensation between traits (Marks & Lechowicz

2006). Despite the overlap, tropical trees were distin-

guished by reaching the greatest maximum capacity by

having large vessels with a long functional lifetime (= large

sapwood areas). These features are consistent with selec-

tion favouring efficiency over safety in their relatively per-

missive habitat where the threat of cavitation by freezing

or water stress is low (McCulloh et al. 2010).

The temperate diffuse- and ring-porous trees had lower

peak transport capacities than the tropical trees. Accord-

ingly, their habitat is not so permissive, certainly not in the

case of freezing-induced cavitation. The adaptation to win-

ter freezing takes different forms in ring- vs. diffuse-porous

types (Sperry et al. 1994). Ring-porous trees had essen-

tially the same range of vessel diameters and taper expo-

nents as tropical trees, but the large vessels are sacrificed

annually to cavitation by freezing. Hence, their drop in

predicted transport capacity (lower Qref) and flatter scaling

(lower q) relative to tropical trees results from giving up

sapwood area.

Diffuse-porous temperate trees arguably adapted to

freezing by having vessels narrow enough to limit the

extent of cavitation (and many also reverse cavitation in

spring; Hacke & Sauter 1996; Sperry et al. 1994). Their

drop in transport capacity relative to tropical trees results

from narrower vessels and less taper rather than less sap-

wood area. Both ring- and temperate diffuse-porous adap-

tations to freezing result in fairly similar estimated

transport capacities: short-functioning and hence few,

large vessels in ring-porous trees roughly equated to long-

functioning and hence numerous, narrow vessels in diffuse-

porous trees.

The conifers exhibit convergent scaling with temperate

angiosperms despite very divergent wood structure. Their

unicellular tracheids are limited in diameter for develop-

mental and mechanical reasons compared with multicellu-

lar vessels (Pittermann et al. 2006). Hence tracheid taper

functions are flatter (lower p range, Table 3). The greater

impact of interconduit pits in conifers (lower C, Table 2) is

because tracheids are much shorter than vessels and water

encounters more interconduit walls as it flows through a

given length of branch. But these disadvantages are largely

compensated for by the efficiency of the torus-margo struc-

ture of their intertracheid pitting (Pittermann et al. 2005).

The narrow tracheid diameters and low taper are made up

for by maximally efficient packing functions (Sperry,

Meinzer & McCulloh 2008). Conifer wood is a honeycomb

of tracheids and consequently has a much greater conduct-

ing area (CF up to 0·42, Table 3) than angiosperm xylem

with its vessels dispersed in a fibre-parenchyma matrix

(CF < 0·37). Conifer wood partially dodges the efficiency

vs. safety trade-off by increasing efficiency with conduit

number rather than conduit diameter.

Conifers also had packing exponents consistently less

negative than d = �2 (Table 3; McCulloh et al. 2010),

leading to a high water use exponent (q) despite their

low taper exponent (p) range. Less negative d in conifers

means there is a greater fraction of space devoted to

water conduction in trunks vs. twigs. Anatomically, this

is likely owing to a lower ratio of tracheid wall thick-

ness: tracheid lumen diameter (‘thickness-to-span’ ratio)

in trunks vs. twigs. The thickness-to-span ratio in turn

scales with the strength of tracheids against implosion by

internal negative sap pressures (Hacke et al. 2001). Thus,

low thickness-to-span in trunk tracheids corresponds

with less negative sap pressures proximally and vice-versa

in the distal twigs.

If the model predictions are realistic, actual trees should

fall within the boundaries shown in Fig. 4, but not neces-

sarily fill them, because not all modelled trait combinations

may have evolved. Indeed, data on intraspecific q, while

limited, appear to primarily fall within the upper portion

of the predicted range. Values of q much below ca. 1·5
have not been observed in trees (Enquist, West & Brown

2000; Mencuccini 2003; Meinzer et al. 2005; Sperry, Mein-

zer & McCulloh 2008), which is why lower values were

excluded for assessing interspecific scaling. Flow rates for

trees of ca. 72 cm in diameter (ca. 4 to 125 kg hr�1) are

also consistent with the predicted Qref range (Enquist,

Brown & West 1998; Wullschleger, Meinzer & Vertessy

1998; Meinzer et al. 2005). A review of whole-tree water

use in 67 species indicated no systematic differences in

daily tree water use vs. trunk diameter between the four

functional types we considered (Wullschleger, Meinzer &

Vertessy 1998), which is consistent with their extensive

overlap in Qref (Fig. 4). The predicted similarity of temper-

ate tree types is supported by observed parity in whole-tree

hydraulic conductance between temperate conifers and

temperate angiosperms (Becker, Tyree & Tsuda 1999).

Where differences have been seen between categories, they

support model predictions. Tropical angiosperm trees in

one extensive comparison moved more water per diameter

than temperate conifers, consistent with our model results

(Meinzer et al. 2005). A more direct test of the model in a

diffuse- and a ring-porous species is the subject of the

second paper in this series (von Allmen et al. 2012).

The functional type simulations indicate that there are

multiple ways to ‘skin the cat’ when it comes to achieving

a given water transport capacity and size-scaling. The

Savage et al. derivation of an optimal taper (p = 1/3,

eqn 5) effectively captures the consequences of conduit

taper while holding other variables constant (Savage et al.

2010). In our more detailed model, conduit taper

emerges as one of several influences on water use scaling,
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underscoring the likelihood that selection on any single

trait (like taper) can be relaxed by compensating changes

in other variables (e.g. packing function, leaf hydraulics

and sapwood area). Nevertheless, the boundaries of the

Qref by q scaling space were finite and relate in context-spe-

cific ways to the same space-filling and safety vs. efficiency

constraints emphasized by Savage et al.

The simulated scaling space excluded three-fourth

intraspecific metabolic scaling. The greatest metabolic

exponent was c·q = 0·71 and random sampling yielded an

intraspecific mean c·q � 0·63. This mean is similar to the

range predicted from observed water use scaling within

the few tree species where it has been assessed (Mencuc-

cini 2003; Meinzer et al. 2005). If metabolic scaling does

indeed center on c·q = 0·75 as has been proposed

(Enquist, Brown & West 1998; Enquist, West & Brown

2000; Niklas & Enquist 2001), the reason remains

ambiguous based on our results.

Given the focus on three-fourth power scaling, we

looked for situations where it could be consistent with the

model and found two of them. Intraspecifically, if hydrau-

lic conductance increases faster in roots than in shoots

with size, q can reach or exceed 2 (q � 2) and c·q � 0·75.
This pattern has been proposed as a mechanism to com-

pensate for a potential hydraulic limitation on tree height

(Magnani, Mencuccini & Grace 2000). However, data are

limited and equivocal, with some species showing an

increase in K/KS with size (Martinez-Vilalta et al. 2007)

and others not (von Allmen et al. 2012). A related expla-

nation that applies to interspecific scaling is that species

with greater inherent transport capacity (larger k2 and/or

q) would have less of a hydraulic limitation to height and

grow taller than species with lower transport capacity. A

bias for greater stature with steeper intraspecific scaling

can theoretically give metabolic c·q exponents of 0·75 or

higher (Fig. 5). While both scenarios are compatible with

three-fourth power scaling, neither predicts that particular

exponent from a priori optimization in the WBE sense.

Our species-level model is purposefully more complex

and realistic than the Savage et al. analytical version. By

allowing many functional traits to simultaneously vary, the

numerical model reveals how a species’ metabolic scaling

results from interaction between complex trait interactions

and covariance. A finite scaling space appears more realis-

tic than convergence on one particular rule. This conclu-

sion is based on a limited number of hydraulic traits, but

is likely to be reinforced when additional complexities are

considered. For example, the range of branching structure

is more diverse than the generic WBE default (Price,

Enquist & Savage 2007; L.P. Bentley, B.J. Enquist, V.M.

Savage, P.B. Reich, D.D. Smith & J.S. Sperry, in review),

carbon allocation may not always preserve isometry

between metabolic sinks and vascular supply (Reich et al.

2006; Enquist et al. 2007b), and vascular supply itself

would be modulated by dynamics of cavitation and refill-

ing. Incorporating such complexity can translate an even

broader diversity of plant functional traits into whole-

plant performance. Such a framework could have general

utility in ecology from constraining ecosystem fluxes and

stocks to exploring the optimization of trait interactions.
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